

Ассистент для команд разработки

Инструкция по развертыванию и установке

Всего листов: 54

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

Аннотация

Настоящий документ представляет собой руководство для развертывания и установки Ассистента для команд разработки (АКР). Руководство содержит подробное описание подготовки инфраструктуры (включая LLM, объектное хранилище и Kubernetes), развертывания компонентов системы (интерфейс АКР, микросервисы DWH), а также инструкции по сборке исходных кодов и проверке работоспособности компонентов. Документ предназначен для администраторов, осуществляющих внедрение и настройку АКР.

Содержание

Аннотация	2
1.Введение	4
1.1.Область применения системы	4
1.2.Краткое описание возможностей системы	лена
1.3.Уровень подготовки пользователя	
1.4.Перечень эксплуатационной документации для ознакомления	
1.5.Глоссарий	
2.Общее описание системы «Ассистент для команд разработки»	7
2.1.Назначение системы	
2.2.Условия применения системы	
2.2.1.Общие условия	
2.2.2.Требования к инфраструктуре	
2.2.3.Требования к рабочей станции для развертывания контура	
2.2.4.Требования к программному обеспечению инфраструктуры	
3.Инструкция по развертыванию системы «Ассистент для команд разработки»	
3.1.Подготовка инфраструктуры к развертыванию системы	
3.1.1.Порядок разворачивания LLM (vdc-rk-gpu)	
3.1.2.Порядок разворачивания СУБД (vdc-rk-postgres01)	
3.1.3.Порядок разворачивания объектного хранилища Ś3 (vdc-rk-minio)	18
3.1.4.Установка одиночного экземпляра MinIO	18
3.1.5.Порядок разворачивания kubernetes	20
3.2. Развертывание компонентов системы	30
3.2.1.Развертывание компонента интерфейса АКР	30
3.2.5.Развертывание сервиса DWH	43
3.2.7.Развертывание LLM	46
4.Инструкция по сборке исходных кодов системы «Ассистент для команд разработк	
4.1.Запуск компонентов непосредственно в среде разработки LLM	50
4.2.Проверка работы компонентов	50
4.2.1.Общие сведения	50
4.2.2.Проверка system_check_consumer.py	51
5.Журнал автотестирования системы «Ассистент для команд разработки»	52

1. Введение

1.1.Область применения системы

Областью применения Системы является деятельность по написанию программного кода, тестированию ПО и написанию технической и сопровождающей документации для разработки ПО.

1.2. Уровень подготовки пользователя

Для выполнения операций, предусмотренных настоящим Руководством, пользователю с ролью «Администратор» потребуются знания основ информационной безопасности, навыки администрирования серверов и вычислительных сетей, рекомендуется наличие навыков и опыта работы с технологиями docker, kubernetes, Keycloak, Postgresql. Необходимо обладать опытом управления системами с искусственным интеллектом (ИИ) и опытом настройки LLM, что предполагает наличие навыков создания, редактирования и оптимизации инструкций для LLM, навыков оценки качества выходных данных LLM, навыков анализа текстов для составления инструкций и примеров для LLM. Также потребуется понимание принципов обработки естественного языка, понимание синтаксиса, семантики и языковой структуры русского и английского языков.

1.3. Перечень эксплуатационной документации для ознакомления

Перед началом работы по установке, настройке, администрированию Системы пользователю с ролью «Администратор» необходимо ознакомиться с настоящим Руководством в полном объеме.

1.4.Глоссарий

В тексте настоящего документа представлены следующие сокращения (см. Таблица 1-1).

Таблица 1-1 — Перечень сокращений

Сокращение/аббревиатура	Значение
АРМ	Автоматизированное рабочее место
ии	Искусственный интеллект
по	Программное обеспечение
Система	Ассистент для команд разработки
субд	Система управления базой данных

OOO «ГК «ИННОТЕХ»

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

Сокращение/аббревиатура	Значение
ТЗ	Техническое задание
LLM	Large Language Model – Большая языковая модель

В тексте настоящего документа представлены следующие термины и определения (см. **Таблица 1-2**).

Таблица 1-2 — Перечень терминов и определений

Термин	Определение
Авторизация	Предоставление определенному лицу или группе лиц прав на выполнение определенных действий
Аутентификация	Проверка подлинности предъявленного Пользователем идентификатора
Администратор Системы	Пользователь Системы с ролью «Администратор»
Заказчик	Физическое или юридическое лицо, которое инициирует, заказывает и финансирует разработку, модификацию или поддержку программного обеспечения Системы.
	После приемки услуг по разработке Системы Заказчик является Владельцем Системы
Идентификатор Пользователя	Уникальный признак объекта, позволяющий отличать его от других
Идентификация	Процедура, в результате выполнения которой для субъекта выявляется его идентификатор, однозначно определяющий этого субъекта в Системе интеллектуального анализа документов
Компонент (программного обеспечения)	Составная часть программного обеспечения, выполняющая определенную функцию
Пользователь	Работник, наделенный правами доступа к информационным ресурсам организации
Подсказка Системный промпт для LLM - представляет собой руководящие инститительной или исходные данные, которые задаются модели, чтобы она генерировать ответы на запросы пользователя	
Ролевая модель	Распределение прав доступа и обязанностей между ролями. Определяет, какие действия может выполнять каждая роль в рамках работы с Системой, включая создание и редактирование правил, проведение проверок и управление

Роль	Набор полномочий, который необходим Пользователю для выполнения определённых рабочих задач. Каждый сотрудник может иметь одну или несколько ролей, а каждая роль может содержать от одного до множества полномочий, которые разрешены Пользователю в рамках этой роли. Роли Пользователей в Системе: — «Пользователь»; — «Администратор».
ИТ-инфраструктура	Совокупность всего программного обеспечения, оборудования, сетей и подключенных сервисов, образующих ИТ-среду организации
Файл	Цифровой носитель информации, содержащий текстовые и(или) графические данные, с любым из перечисленных расширений: .txt, .java, .js, .ts, .html, .MD.

2. Общее описание системы «Ассистент для команд разработки»

2.1. Назначение системы

Система предназначена для ускорения процесса написания программного кода за счет ответов на вопросы, улучшения качества кода через анализ ошибок и рекомендаций по улучшению, сокращения времени разработки и вывода продуктов на рынок, сокращения материальных затрат на разработку новых сервисов.

В целях помощи командам разработки Система предназначена для удовлетворения задач использования безопасных решений, соответствующих стандартам работы в корпоративных контурах, включая поддержку замкнутых сетей и исключение утечек данных.

Система подразумевает возможность подбора размера LLM под существующую ИТ-инфраструктуру и потребности Заказчика.

Система подразумевает её использование в качестве веб-приложения или по API другими приложениями, такими как плагины для интегрированных сред разработки (IDE).

В Системе предусматривается использование инструментов для оценки эффективности решения и мониторинга активности пользователей.

Система предназначена для организаций, занимающихся разработкой и поддержкой программных продуктов с большим количеством команд разработки, и направлена на повышение безопасности и эффективности процессов разработки, анализа и тестирования ПО..

2.2. Условия применения системы

2.2.1.Общие условия

Режим эксплуатации Системы: 5х8 (5 дней в неделю по 8 часов) в часы работы Заказчика.

Для возможности администрирования Системы должны выполняться условия, предусмотренные пп. 2.2.2, 2.2.3, 2.2.4 Руководства.

Для настройки журналирования событий по информационной безопасности уровень логирования рекомендуется выставлять в warning - как компромиссный уровень между объемом информации и детализацией.

2.2.2.Требования к инфраструктуре

Для работы Системы требуется 5 виртуальных машин, состав которых определен в **Таблице 2-1** настоящего Руководства.

Таблица 2-1 – Состав виртуальных машин

Компонент	Состав	Название сервера	ip	Примечание

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

Центр анализа – LLM	code LLM, nvidia GPU drivers, docker-toolkit docker engine	vdc-rk-llm-gpu	10.10.10.10	-
СУБД	PostgreSQL	vdc-rk-postgres01	10.10.10.11	-
Master node kubernetes 01	k8s	vdc-rk-k8s01	10.10.10.12	-
Worker node kubernetes 02	k8s	vdc-rk-k8s02	10.10.10.13	-
Сервер объектного хранилище S3	minio	vdc-rk-minio01	10.10.10.19	-

2.2.3.Требования к рабочей станции для развертывания контура

Для выполнения операций по развертыванию контура Системы на рабочей станции должны быть выполнены следующие требования:

- операционная система Linux:
 - рабочая станция должна быть запущена на базе операционной системы
 (ОС) Linux;
 - о ОС должна взаимодействовать с драйверами на GPU;
 - о дополнительные требования к ОС определяются внутренними документами Заказчика;
- программное обеспечение:
 - o helm;
 - o kubectl;
 - o sshpass;
- сетевые настройки: рабочая станция должна иметь доступ по SSH ко всем серверам, участвующим в развертывании контура Системы;
- доступ по SSH-ключам: для упрощения процесса развертывания рекомендуется настроить беспарольный доступ по SSH с рабочей станции на все серверы;
- права доступа: пользователь на рабочей станции должен иметь
 привилегированный доступ (sudo) для выполнения административных задач;

- настройки безопасности: SSH-ключи, используемые для доступа к серверам,
 должны быть защищены и безопасно храниться;
- дополнительные утилиты: утилиты `wget`, `curl`, `tar`, `unzip`, `telnet nc net-tools`
 должны быть подготовлены для скачивания и распаковки файлов;
- резервное копирование: рекомендуется регулярно создавать резервные копии конфигурационных файлов и ключей на рабочей станции;
- проверка и тестирование: на рабочей станции должны быть установлены инструменты для тестирования и проверки конфигураций, такие как ping, telnet, nslookup, net-tools, nc;
- документация: рабочая станция должна иметь доступ к актуальной документации
 о Системе и инструкциям по развертыванию.

2.2.4.Требования к программному обеспечению инфраструктуры

Для обеспечения работы Системы необходимо соблюдать следующие требования:

- наличие программного обеспечения (ПО) на виртуальных машинах (VM),
 составляющих инфраструктуру Системы, соответствующего требованиям,
 установленным в п. 2.2.4 Руководства;
- ОС: поддерживает драйверы GPU Nvidia H100 и соответствует техническим требованиям Заказчика по RHEL;
- требования к виртуальным машинам предоставляются отдельно;
- в контуре должен быть установлен NTP-сервер;
- все машины контура должны синхронизировать время;
- на всех хостах должен быть заведён служебный пользователь с правом выполнения команд с привилегиями суперпользователя для установки и настройки компонентов Системы;
- на всех хостах должен быть установлен и настроен ssh с возможностью авторизации служебным пользователем;
- СРU рекомендуется Xeon Gold или аналог;
- отсутствие VPN соединений между VM;
- сеть:
 - о скорость не менее 1 Гбит;
 - о агрегация физических линков на серверах для отказоустойчивости (не

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

менее 2 подключений);

- о для схемы размещения в одном ЦОД все серверы должны быть в одной подсети без фильтрации трафика между ними;
- на каждой виртуальной машине должен быть установлен и настроен iptables;
- наличие Nexus: в Nexus должны быть созданы по списку репозитории для apt,
 helm, npm, maven, docker, pypi;
- наличие docker для запуска контейнеризованных приложений, необходимый для работы с docker-образами и контейнерами.

3. Инструкция по развертыванию системы «Ассистент для команд разработки»

3.1.Подготовка инфраструктуры к развертыванию системы

3.1.1.Порядок разворачивания LLM (vdc-rk-gpu)

3.1.1.1.Общие сведения

Для разворачивания необходимо последовательно выполнить следующие шаги:

- a) Создать машину в VMware vCloudDirector с названием vdc-rk-gpu на основе ОС Ubuntu 22.04.3 LTS (GNU/Linux 5.15.0-94-generic x86_64) и с характеристиками, приведенными в **Таблице 2-1** настоящего Руководства.
- b) При загрузке ОС убедиться, что версия ядра ОС 5.15.0-94-generic.
- с) Выполнить настройку сетевых интерфейсов, указав IP-адрес 10.10.10.10.
- d) Создать отдельного не привилегированного пользователя «adduser user-worker» для выполнения настроек.
- e) Добавить пользователя в группу sudo с использованием команды:

sudo usermod -aG sudo user-worker

f)

3.1.1.2. Установка драйвера для nVidia GPU

Для установки необходимо последовательно выполнить следующие шаги:

а) Проверить подключение видеокарт к серверу перед установкой драйвера с использованием команды:

lspci -nnk

b)

Ожидаемый результат – вывод списка видеокарт, подключенных к серверу.

а) При наличии видеокарт выполнить установку драйверов.

3.1.1.3. Установка NVIDIA CUDA drivers

Установку следует осуществлять на основании официальной документации, размещенной в сети Интернет по ссылке: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/.

3.1.1.4.Проверка GPU

Для проверки наличия графического процессора с поддержкой CUDA GPU необходимо в

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

командной строке указать команду:

```
lspci | grep -i nvidia
```

Если не отображаются какие-либо параметры, то следует обновить базу данных PCIоборудования, которая ведется в Linux, для чего необходимо:

- a) Указать «update-pciids» в командной строке (обычно находится в /sbin).
- b) Повторно выполнить предыдущую команду «Ispci».

Примечание – GPU поддерживает CUDA в случае, если видеокарта – NVIDIA и указана в списке, размещенном в сети Интернет по ссылке: https://developer.nvidia.com/cuda-gpus).

3.1.1.5. Проверка версии Linux

Для проверки наличия поддерживаемой версии Linux (определение установленного дистрибутива и номера релиза) необходимо указать команду в командной строке:

```
uname -m & & cat /etc/*release
```

Примечание — средства разработки CUDA поддерживаются только в некоторых определенных дистрибутивах Linux; перечислены в примечаниях к выпуску CUDA Toolkit.

Ожидаемый результат должен быть похож на указанный в примере ниже, и изменен для конкретной системы.

Пример

```
x86_64
Red Hat Enterprise Linux Workstation выпуск 6.0 (Santiago)
```

Примечание — строка x86_64 указывает на то, что работа выполняется на 64-битной системе. Остальная часть содержит информацию о дистрибутиве.

3.1.1.6.Установка CUDA и проверки установки

Установку следует осуществлять на основании официальной документации, размещенной в сети Интернет по ссылке: https://developer.nvidia.com/cudadownloads?target_os =Linux&target_arch=x86_64&Distribution=Ubuntu & target_version = 22.04&target_type=deb_local.

3.1.1.7.CUDA Toolkit Installer

Для установки необходимо последовательно выполнить следующие шаги:

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

```
wget
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu
2204/x86_64/cuda-ubuntu2204.pin
sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-
repository-pin-600
wget
https://developer.download.nvidia.com/compute/cuda/12.6.2/local
_installers/cuda-repo-ubuntu2204-12-6-local_12.6.2-560.35.03-
1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu2204-12-6-local_12.6.2-560.35.03-
1_amd64.deb
sudo cp /var/cuda-repo-ubuntu2204-12-6-local/cuda-*-keyring.gpg
/usr/share/keyrings/sudo apt-get update
sudo apt-get -y install cuda-toolkit-12-6
```

3.1.1.8. Установка драйвера

Для установки необходимо последовательно выполнить следующие шаги:

а) По установке с использованием команды:

```
sudo apt-get install -y nvidia-open
```

b)

b) Перезагрузить Систему, чтобы загрузить драйверы NVIDIA:

```
sudo reboot
```

c)

 с) Проверить корректность установки драйверов – в терминале выполнить команду nvidia-smi.

Ожидаемый результат – отображение в таблице описания всех видеокарт.

3.1.1.9. Установка docker engine

Для установки необходимо последовательно выполнить следующие шаги:

a) Добавить репозиторий docker:

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

```
# Add Docker's official GPG key:
    sudo apt-get update
    sudo apt-get install ca-certificates curl
    sudo install -m 0755 -d /etc/apt/keyrings
    sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -
    o /etc/apt/keyrings/docker.asc
    sudo chmod a+r /etc/apt/keyrings/docker.asc

# Add the repository to Apt sources:
    echo \
    "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc]
    https://download.docker.com/linux/ubuntu \
    $(. /etc/os-release && echo "$VERSION_CODENAME")
    stable" | \
         sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
    sudo apt-get update
```

b)

b) Обновить список пакетов в репозиториях:

```
sudo apt-get update
```

c)

с) Установить необходимые пакеты:

sudo apt-get install docker-ce docker-ce-cli containerd.io
docker-buildx-plugin docker-compose-plugin

d)

d) Добавить пользователя в группу docker:

```
sudo usermod -aG docker $USER
```

e)

3.1.1.10. Установка и настройка Container toolkit

Для настройки и установки необходимо последовательно выполнить следующие шаги:

а) Настроить репозиторий:

```
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-
toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-
container/stable/deb/nvidia-container-toolkit.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-
container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
```

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

b)

b) Обновить список пакетов в репозиториях:

sudo apt-get update

c)

с) Установить NVIDIA Container Toolkit пакеты:

```
sudo apt-get install -y nvidia-container-toolkit
```

d)

Примечание – действия следует выполнять через Apt.

3.1.1.11.Тестирование установки драйверов и компонентов для работы с GPU в docker

Для проверки того, что GPU передает в docker-контейнеры необходимо запустить тестовый контейнер с использованием команды:

sudo docker run --rm --runtime=nvidia --gpus all ubuntu nvidia-smi

Ожидаемый результат:

```
+----+
| NVIDIA-SMI 535.86.10 Driver Version: 535.86.10 CUDA Version:
12.2 |
|----+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute
M. |
|----+
| 0 Tesla T4 On | 00000000:00:1E.0 Off | 0 |
| N/A 34C P8 9W / 70W | OMiB / 15109MiB | 0% Default |
+----+
+----+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|-----|
| No running processes found |
+-----
```

Отображение ожидаемого результата означает, что установка завершена, драйверы работают корректно.

После окончания установки можно выполнить действия по развертыванию центра анализа.

Примечание— действия следует осуществлять на основании официальной документации, размещенной в сети Интернет по ссылке: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/sample-workload.html.

3.1.2.Порядок разворачивания СУБД (vdc-rk-postgres01)

3.1.2.1.Общие сведения

Для разворачивания необходимо последовательно выполнить следующие шаги:

a) Создать машину в VMware vCloudDirector с названием vdc-rk-postgres01 на основе OC Ubuntu 22.04.3 LTS и с характеристиками, приведенными в **Таблице 2-1** настоящего Руководства.

- b) Выполнить настройку сетевых интерфейсов, указав IP-адрес 10.10.10.11.
- c) Создать отдельного не привилегированного пользователя «adduser user-worker» для выполнения настроек.
- d) Добавить пользователя в группу sudo.

3.1.2.2.Установка PostgreSQL

Для установки необходимо последовательно выполнить следующие шаги:

- a) Установить Postgresql 14 из предоставленных дистрибутивов.
- b) Проверить установку и запуск PostgreSQ с использованием команды:

```
sudo systemctl start postgresql
sudo systemctl enable postgresql
sudo systemctl status postgresql
```

c)

3.1.2.3.Создание базы данных, пользователя, схемы и предоставления привилегий

Пример создания базы данных, пользователя, схемы и предоставления привилегий приведен ниже.

Пример

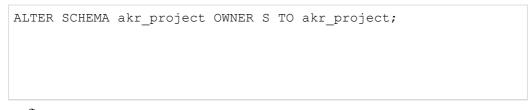
Необходимо последовательно выполнить следующие шаги:

a) Подключиться к PostgreSQL от имени пользователя postgres:

```
sudo -i -u postgres psql
```

- b)
- b) Создать пользователя и базу данных akr_project.
- с) Подключиться к созданной базе данных:

```
CREATE USER akr_project WITH PASSWORD 'password';
CREATE DATABASE akr_project;
\c akr_project;
```


- d)
- d) Создать схему.
- e) Предоставить все привилегии пользователю akr_project:

```
CREATE SCHEMA akr_project;

GRANT ALL PRIVILEGES ON DATABASE akr_project TO akr_project;

GRANT ALL PRIVILEGES ON SCHEMA akr_project TO akr_project;
```

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

f)

Примечание – создание остальных баз данных по аналогии с graph_project.

3.1.3.Порядок разворачивания объектного хранилища S3 (vdc-rk-minio)

Для разворачивания необходимо последовательно выполнить следующие шаги:

- a) Создать машину в VMware vCloudDirector с названием vdc-rk-minio на основе ОС Ubuntu 22.04.3 LTS и с характеристиками, приведенными в **Таблице 2-1** настоящего Руководства.
- b) Выполнить настройку сетевых интерфейсов, указав IP адрес 10.10.10.19.
- c) Создать отдельного не привилегированного пользователя adduser user-worker для выполнения настроек.
- d) Добавить пользователя в группу sudo.

3.1.3.1.Добавление прав sudo пользователю

Для добавления прав необходимо в файле /etc/sudoers.d/user-worker добавить и сохранить следующую строку:

```
user-worker ALL=(ALL) NOPASSWD: ALL
```

3.1.4. Установка одиночного экземпляра MinIO

3.1.4.1.Загрузка и установка MinIO

Для загрузки и установки необходимо последовательно выполнить следующие шаги:

а) Скачать исполняемый файл MinIO:

```
wget https://dl.min.io/server/minio/release/linux-amd64/minio
```

b)

b) Сделать файл исполняемым:

```
chmod +x minio
```

c)

c) Переместить файл в каталог /usr/local/bin/ для удобного запуска:

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

d)

3.1.4.2.Создание директории для данных и конфигурации

Для создания директории необходимо последовательно выполнить следующие шаги:

а) Создать директорию, где будут храниться данные MinIO:

```
sudo mkdir /media/minio-data
```

b)

b) Создать пользователя и группу для MinIO:

```
\verb+sudo+ user-dd-rminio-user-s/sbin/nologin+\\
```

c)

с) Назначить созданному пользователю права на директорию:

```
sudo chown -R minio-user:minio-user /mnt/data
```

d)

3.1.4.3. Настройка MinIO как службы

Для настройки необходимо последовательно выполнить следующие шаги:

а) Создать конфигурационный файл службы:

```
sudo nano /etc/systemd/system/minio.service
```

b)

b) Вставить в файл следующий контент:

```
[Unit]
Description=MinIO Object Storage
After=network.target

[Service]
User=minio-user
Group=minio-user
ExecStart=/usr/local/bin/minio server /media/minio-data --
console-address ":9001"
Restart=always
LimitNOFILE=65536
Environment="MINIO_ROOT_USER=admin"
Environment="MINIO_ROOT_PASSWORD=strongpassword"

[Install]
WantedBy=multi-user.target
```

- c)
- с) Сохранить файл.
- d) Закрыть файл.
- е) Включить и осуществить запуск службы:

```
sudo systemctl daemon-reload
sudo systemctl enable minio
sudo systemctl start minio
```

3.1.4.4.Проверка статуса MinIO

Для проверки статуса запуска необходимо использовать команду:

```
sudo systemctl status minio
```

3.1.4.5. Доступ к веб-интерфейсу MinIO

После запуска можно открыть веб-браузер и перейти по ссылке: http://10.10.10.19:9001.

Необходимо использовать учетные данные, указанные в файле службы:

- имя пользователя: admin;
- пароль: strongpassword.

3.1.5. Порядок разворачивания kubernetes

3.1.5.1.Общие сведения

Для разворачивания необходимо последовательно выполнить следующие шаги:

- a) Создать машину в VMware vCloudDirector с названием vdc-rk-k8s01 на основе ОС Ubuntu 22.04.3 LTS и с характеристиками, приведенными в **Таблице 2-1** настоящего Руководства.
- b) Выполнить настройку сетевых интерфейсов, указав IP-адрес 10.10.10.12.
- c) Создать отдельного не привилегированного пользователя adduser user-worker для выполнения настроек.
- d) Добавить пользователя в группу sudo.

3.1.5.2.Подготовка VM к установке kubernetes

3.1.5.2.1.Обновление операционной системы

Необходимо обновить все пакеты Системы до актуальных версий:

```
sudo apt update && sudo apt upgrade -y
```

3.1.5.2.2. Настройка имени хоста и hosts-файла

Для функционирования кластера в нормальном режиме следует настроить уникальное имя хоста для каждого узла.

Также необходимо:

а) Добавить запись в файл /etc/hosts для разрешения имен узлов:

```
sudo nano /etc/hosts
```

b)

b) Добавить следующую строку (изменить IP и имя хоста на необходимые значения):

```
10.10.10.12 vdc-rk-k8s01
10.10.10.13 vdc-rk-k8s02
```

3.1.5.2.3.Отключение swap

Для временного отключения swap необходимо использовать команду:

```
sudo swapoff -a
```

Для постоянного отключения swap закомментируйте или удалите строку, содержащую swap, в файле /etc/fstab:

```
sudo nano /etc/fstab
```

Примечание – необходимо отключить swap, т.к. kubernetes не поддерживает работу с включенным swap.

3.1.5.3. Настройка сетевых параметров — включение iptables для перенаправления трафика

Для включения необходимо последовательно выполнить следующие шаги:

a) Проверить, что параметры netfilter позволяют пересылать трафик:

```
sudo modprobe br_netfilter
```

b)

b) Создать конфигурационный файл:

```
cat <<EOF | sudo tee /etc/modules-load.d/k8s.conf br_netfilter
EOF</pre>
```

c)

с) Включить необходимые параметры:

```
cat <<EOF | sudo tee /etc/sysctl.d/k8s.conf net.bridge.bridge-
nf-call-ip6tables = 1 net.bridge.bridge-nf-call-iptables = 1
EOF</pre>
```

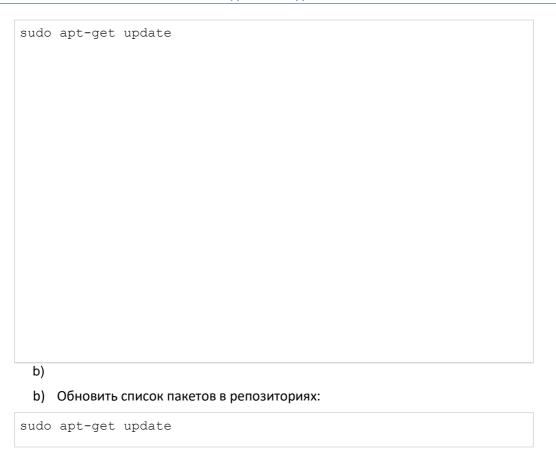
d)

d) Принять изменения:

```
sudo sysctl --system
e)
```

Примечание – для kubernetes необходима корректная работа iptables.

3.1.5.4. Установка docker


Для установки необходимо последовательно выполнить следующие шаги:

a) Добавить репозиторий docker:

```
# Add Docker's official GPG key:
sudo apt-get update
sudo apt-get install ca-certificates curl
sudo install -m 0755 -d /etc/apt/keyrings
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o
/etc/apt/keyrings/docker.asc
sudo chmod a+r /etc/apt/keyrings/docker.asc

# Add the repository to Apt sources:
echo \
   "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc]
https://download.docker.com/linux/ubuntu \
   $(. /etc/os-release && echo "$VERSION_CODENAME")
stable" | \
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
```

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

c)

с) Установить необходимые пакеты:

 $\verb|sudo| apt-get| install docker-ce| docker-ce-cli| containerd.io docker-buildx-plugin| docker-compose-plugin|$

d)

d) Добавить пользователя в группу docker:

```
sudo usermod -aG docker $USER
```

e)

Примечание — для kubernetes необходимо наличие контейнерной среды для запуска контейнеров. Можно использовать docker, а также и другие, например, containerd.

3.1.5.5. Настройка конфигурации docker для работы с cgroup

Для корректной работы с kubernetes следует настроить cgroup driver. Для этого необходимо последовательно выполнить следующие шаги:

а) Создать или изменить файл /etc/docker/daemon.json:

```
sudo nano /etc/docker/daemon.json
b)
```

b) Добавить следующие параметры:

```
"exec-opts": ["native.cgroupdriver=systemd"],
"log-driver": "json-file",
"log-opts": {
   "max-size": "100m"
   },
   "storage-driver": "overlay2"
}
```

c)

c) Применить изменения и перезапустить docker:

```
sudo systemctl restart docker

d)
```

3.1.5.6.Открытие необходимых портов

Для корректного функционирования кластера kubernetes необходимо открыть следующие порты:

- на master -узле:
 - o 6443: API сервер kubernetes;
 - o 2379-2380: etcd серверы;
 - o 10250: kubelet API;
 - o 10251: kube-scheduler;
 - o 10252: kube-controller-manager;
- worker -узле:
 - o 10250: kubelet API
 - o 30000-32767: NodePort для доступа к сервисам.

Также следует открыть порты в firewall:

```
sudo ufw allow 6443
sudo ufw allow 2379:2380/tcp
sudo ufw allow 10250
sudo ufw allow 10251
sudo ufw allow 10252
sudo ufw allow 30000:32767/tcp
```

3.1.5.7.Синхронизация времени

Для корректной работы кластера необходимо, чтобы время на всех узлах было

синхронизировано.

Для установки NTP необходимо выполнить:

```
sudo apt install -y ntp
sudo systemctl enable ntp sudo systemctl start ntp
```

3.1.5.8. Установка необходимых инструментов

3.1.5.8.1. Проверка утилит

Для проверки установки на сервере необходимых утилит следует выполнить:

```
sudo apt install -y apt-transport-https ca-certificates curl
```

3.1.5.8.2. Настройка доступа по ssh между всеми машинами по ключу Для настройки необходимо последовательно выполнить следующие шаги:

 а) Выполнить генерацию SSH-ключей на управляющей машине – команду для создания SSH-ключей на машине, которая будет использоваться для развертывания:

```
ssh-keygen -t ed25519 -C "коментарий по поводу ключа"
b)
```

Примечание — по умолчанию ключи будут сохранены в файле ~/.ssh/id_ed25519. При создании можно оставить поля пароля пустыми, чтобы не вводить его каждый раз при подключении.

b) Выполнить копирование публичного ключа на все узлы в кластере с использованием команд ssh-copy-id:

```
ssh-copy-id user-worker@10.10.10.12
ssh-copy-id user-worker@10.10.13
c)
```

Ожидаемый результат — отображено предложение ввести пароль для каждого узла, после чего публичный ключ будет добавлен в файл \sim /.ssh/authorized_keys на каждом узле, а также можно подключаться к узлам по ключам без пароля.

3.1.5.8.3. Проверка подключения по SSH

Для проверки возможности подключения к каждому узлу без ввода пароля после копирования ключей необходимо выполнить:

```
ssh user-worker@10.10.13
```

В случае успешного подключения можно выйти с использованием команды exit и

повторить действие для остальных узлов.

3.1.5.8.4. Проверка обратного подключения между узлами

Для проверки возможности подключения узлов друг к другу можно повторить процесс генерации ключей и копирования на каждом узле или в ручном режиме добавить публичные ключи каждого узла в файл \sim /.ssh/authorized keys на других узлах.

3.1.5.8.5.Добавление прав sudo пользователю

Для добавления прав необходимо в файле /etc/sudoers.d/user-worker добавить и сохранить следующую строку:

user-worker ALL=(ALL) NOPASSWD: ALL

3.1.5.8.6.Иные условия

Необходимо повторить все вышеуказанные настройки на каждой VM под k8s кластер.

3.1.5.9. Установка kubernetes

3.1.5.9.1.Подготовка виртуальных машин и создание SnapShot

Перед началом развертывания кластера необходимо проверить соответствие VM следующим требованиям:

- на всех машинах установлена ОС Ubuntu 22.04;
- серверы настроены и выполнено отключение swap;
- выполнена настройка сеть;
- обеспечен доступ по SSH с одного узла на другие.

Внимание! Перед началом установки следует сделать *SnapShot* всех виртуальных машин через vCloud Director. Для этого необходимо последовательно выполнить следующие шаги:

- а) Зайти в интерфейс vCloud Director.
- b) Перейти к требуемой виртуальной машине.
- c) Выбрать Create Snapshot.
- d) Проверить, что созданный SnapShot можно использовать для восстановления в случае возникновения проблем.
- е) Повторить процесс для всех машин, которые будут участвовать в кластере.

3.1.5.9.2.Подготовка машины для развертывания Kubespray

Для установки kubernetes с использованием kubespray необходимо наличие одной машины (локальная или отдельная VM), с которой будет выполняться развертывание.

3.1.5.9.3.Установка необходимых утилит на машине для развертывания Для установки необходимо выполнить:

sudo apt update && sudo apt install -y python3-pip git
sshpass

3.1.5.9.4. Клонирование репозитория kubespray

Для клонирования репозитория kubespray необходимо выполнить:

git clone https://github.com/kubernetes-sigs/kubespray.git
 cd kubespray

3.1.5.9.5. Установка зависимостей

Для установки требуемых Python-зависимостей необходимо выполнить:

```
sudo pip3 install -r requirements.txt
```

3.1.5.9.6. Настройка инвентаря

Для настройки необходимо скопировать пример инвентарного файла, а также выполнить его настройку:

```
cp -rfp inventory/sample inventory/rks-cluster
```

3.1.5.9.7.Генерация файла hosts.yaml

Необходимо использовать скрипт inventory builder для автоматического создания конфигурационного файла:

```
declare -a IPS=(10.10.10.12 10.10.10.13)

CONFIG_FILE=inventory/rks-cluster/hosts.yaml python3
contrib/inventory_builder/inventory.py ${IPS[@]}
```

Также следует в ручном режиме выполнить настройку роли узлов (например, master node и worker node), отредактировать файл inventory/rks-cluster/hosts.yaml:

```
all:
  hosts:
  vdc-rk-k8s01:
  ansible host: 10.10.10.12
  vdc-rk-k8s02:
  ansible host: 10.10.10.13
  children:
  kube control plane:
  hosts:
  vdc-rk-k8s01:
  kube node:
 hosts:
  vdc-rk-k8s02:
  etcd:
  hosts:
  vdc-rk-k8s01:
 k8s_cluster:
 children:
 kube control plane:
  kube node:
  calico rr:
  hosts: {}
```

3.1.5.9.8. Настройка конфигурации kubespray

Для настройки необходимых параметров следует отредактировать файл конфигурации inventory/rks-cluster/group vars/all/all.yml:

```
kube_network_plugin: calico
```

3.1.5.9.9.Отключение установки docker в kubespray

В случае, если docker уже установлен, то следует отключить установку docker и зависимостей через kubespray. Для этого необходимо последовательно выполнить следующие шаги:

- a) Открыть файл inventory/rks-cluster/group_vars/k8s_cluster/docker.yml.
- b) Найти или добавить параметр для передачи kubespray команды не выполнять установку docker, если он уже установлен на узле:

```
docker_skip_install: true

c)
```

3.1.5.9.10.Запуск процесса развертывания

Для запуска необходимо последовательно выполнить следующие шаги:

а) Проверить доступность всех серверов для ansible:

```
ansible all -i inventory/rks-cluster/hosts.yaml -m ping
b)
```

b) Выполнить команду:

```
ansible-playbook -i inventory/rks-cluster/hosts.yaml --become --become-user=user-worker cluster.yml
```

Примечание – опция become позволяет Ansible выполнять команды с привилегиями root.

3.1.5.9.11. Проверка состояния кластера

Для проверки корректности работы кластера после завершения установки необходимо последовательно выполнить следующие шаги:

a) Подключиться к master node:

```
ssh user-worker@vdc-rk-k8s01

b)
```

,

b) Выполнить команду для проверки состояния узлов:

```
kubectl get nodes
c)
```

Ожидаемый результат – вывод списка из четырех узлов, что подтверждает факт разворачивания kubernetes.

с) Можно проверить, что все компоненты Системы установлены и работают, с использованием команды:

```
kubectl get pod -A
d)
```

Ожидаемый результат — вывод список всех подов Системы во всех namespace и статус у каждого пода — Running.

3.1.5.10. Установка local-path Storage Class

Для использования local-path необходимо проверить local-path Storageв в кластере. Для этого необходимо выполнить следующие шаги:

а) Создайть манифест local-path-storage.yaml:

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

```
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: local-path
provisioner: rancher.io/local-path
reclaimPolicy: Retain
volumeBindingMode: WaitForFirstConsumer
```

b)

b) Применить его:

```
kubectl apply -f local-path-storage.yaml
c)
```

3.2. Развертывание компонентов системы

3.2.1. Развертывание компонента интерфейса АКР

3.2.1.1. Компоненты, которые должны быть развернуты в kubernetes

Компоненты, которые должны быть развернуты в kubernetes, приведены в **Таблице 3-1** настоящего Руководства.

Таблица 3-1 – Компоненты, которые должны быть развернуты в kubernetes

Name	Namespace
backend-api	rks-akr
backend-auth	rks-akr
backend-project	rks-akr
backend-report-service	rks-akr
backend-s3-adapter	rks-akr
backend-search	rks-akr
akr-ui	rks-akr

Каждый микросервис загружается в kubernetes с помощью docker-образа микросервиса и yaml файла с описанием объектов данного сервиса для kubernetes.

Готовые docker-образы находятся в папке /_ _, которые необходимо загрузить в docker registry. Для этого в папке следует запустить скрипт upload_images_to_registry.sh.

Пример скрипта приведен ниже.

Пример

```
#!/bin/bash
docker load < backend-api.tar
docker load < backend-auth.tar
docker load < backend-project.tar
docker load < backend-report-service.tar
docker load < backend-s3-adapter.tar
docker load < backend-search.tar
docker load < backend-search.tar
docker load < akr-ui.tar

docker load < akr-ui.tar

docker push localhost:5000/backend-api:latest
docker push localhost:5000/backend-auth:latest
docker push localhost:5000/backend-project:latest
docker push localhost:5000/backend-report-service:latest
docker push localhost:5000/backend-s3-adapter:latest
docker push localhost:5000/backend-search:latest
docker push localhost:5000/backend-search:latest
docker push localhost:5000/akr-ui:latest
```

3.2.1.2. Развертывание сервисов в kubernetes

Для развертывания необходимо последовательно выполнить следующие шаги:

a) Создать namespace:

```
kubectl create namespace rks-akr
b)
```

b) Для развертывания всех сервисов запустить команду:

```
kubectl apply -f mirrion/
```

Примечание — в папке akr/ находятся файлы манифестов для развертывания объектов kubernetes.

c) Через некоторое проверить работу подов всех микросервисов в namespace rks-akr:

```
kubectl get pod -n rks-akr
d)
```

Ожидаемый результат – статус Running.

3.2.1.3.Дополнительная инструкция по развертыванию компонентов АКР

Список необходимых сервисов приведен ниже:

- Васкепd-сервисы:
 - Backend-api;
 - Backend-project;
 - Backend-search;
 - Backend-s3-adapter;
- Frontend-сервис: akr-иі.

Пример файлов конфигурации и рекомендуемые значения параметров для манифестов в k8s приведены ниже.

Пример

- специфические параметры при настройке ingress отсутствуют;
- при инициализации проекта необходимо запускать сервисы в следующей последовательности: маркировок, метаданных, API, далее последовательность не имеет значение;
- примерное потребление ресурсов приведено в Таблице 3-2 настоящего
 Руководства.

Таблица 3-2 – Примерное потребление ресурсов

Сервис	Мин. ОЗУ	Мин.ЦПУ
Backend-api	1Gb	0.3m
Backend-project	2Gb	0.3m
Backend-search	1Gb	0.3m
AKR-websocket	0.5Gb	0.3m
Backend-s3-adapter	1Gb	0.3m
Backend-auth	0.5Gb	0.3m
akr-ui	256Mb	0.1m

При установке сервисов в Linux как демонов (daemon), необходимо. выгрузить jar-файлы и создать юниты, в которых будет описан их запуск/перезапуск.

Пример юнита приведен ниже.

Пример

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

```
[Unit]
Description=Java App AKR
[Service]
Environment="JASYPT_ENCRYPTOR_PASSWORD=graph-backend"
EnvironmentFile=/path/to/envfile
#путь к env файлу для каждого сервиса свой
ExecStart=/usr/bin/java -jar /path/to/your/app.jar
#путь к java файлу приложения
User=in-asu-akr
Restart=on-failure
[Install]
WantedBy=multi-user.target
```

При использовании манифестов в k8s для каждого сервиса должны быть созданы секреты, конфигпамы, сервисы и деплоймент конфигурации. Создание рассмотрено ниже на примере сервиса backend-api:

Примеры

1. Maнuфест configmap.yaml:

```
apiVersion: v1
kind: ConfigMap
metadata:
 name: backend-api-config
 namespace: rks-dev
data:
  STORE PASSWORD: "changeit"
  DATABASE URL: "jdbc:postgresql://10.10.10.10:5432/akrui"
 DATABASE USERNAME: "akrui"
 PROJECT NAME: "AKR"
 ASYNC DATA LIFETIME: "5"
 GROUP ID: "backend-api-dev-group"
 ASYNC_RESULT_TOPIC: "result-topic-dev"
 FIND PATH TOPIC: "find-path-dev"
 APPLICATION NAME: "backend-api-dev"
  SWAGGER URL: "http://10.10.10.10:8081/api"
 COLLECTION HISTORY DAYS: "100"
  COLLECTION HISTORY CRON: "0 0 */2 * * *"
```

2.

2. Манифест deployment.yaml:

```
apiVersion: apps/v1
kind: Deployment
metadata:
 name: backend-api
  labels:
    app: backend-api
  namespace: akr-dev
spec:
 replicas: 1
  strategy:
    type: Recreate
  selector:
    matchLabels:
      app: backend-api
  template:
    metadata:
      labels:
        app: backend-api
    spec:
      affinity:
        podAntiAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
          - labelSelector:
              matchExpressions:
              - key: app
                operator: In
                values:
                - backend-api
            topologyKey: "kubernetes.io/hostname"
      tolerations:
      - key: "node.kubernetes.io/disk-pressure"
        operator: "Exists"
        effect: "NoSchedule"
      containers:
      - name: backend-api
        image: 10.10.10.10:30005/akr-docker-
snapshot/graph/ui/backend-api:latest
        ports:
        - containerPort: 8080
        # volumeMounts:
        # - name: keystore-volume
```

```
mountPath: "/etc/keystore"
     readOnly: true
  # - name: ssl-volume
     mountPath: "/etc/pki/ca-trust/extracted/java"
     readOnly: true
 resources:
   limits:
     cpu: "2.5"
     memory: "2048Mi"
   requests:
     cpu: "1.4"
     memory: "1024Mi"
 livenessProbe:
   httpGet:
     path: /actuator/health
     port: 8080
   initialDelaySeconds: 60
   periodSeconds: 20
   timeoutSeconds: 10
   failureThreshold: 5
 readinessProbe:
   httpGet:
     path: /actuator/health
     port: 8080
   initialDelaySeconds: 30
   periodSeconds: 20
   timeoutSeconds: 10
   successThreshold: 1
 envFrom:
 - configMapRef:
     name: backend-api-config
 - configMapRef:
     name: common-setting-config
 - secretRef:
     name: backend-api-secret
# volumes:
# - name: keystore-volume
   secret:
     secretName: keystore-secret
# - name: ssl-volume
```

#	secret:	
		1
#	secretName:	ssi-secret

3.

3. Манифест secret.yaml:

```
apiVersion: v1
kind: Secret
metadata:
   name: backend-api-secret
   namespace: akr-dev
type: Opaque
stringData:
   DATABASE_PASSWORD: "strong_password_for_example_12332145"
   ARANGO_PASSWORD: "strong_password_for_example_12332145"
   JASYPT_ENCRYPTOR_PASSWORD: "graph-backend"
```

4.

4. Манифест srvc.yaml:

```
apiVersion: v1
kind: Service
metadata:
 name: backend-api-service
 namespace: akr-dev
 labels:
   app: backend-api
spec:
  selector:
   app: backend-api
 ports:
  - protocol: TCP
   port: 9090
   nodePort: 31001
   targetPort: 8080
  type: NodePort
```

5.

5. Манифест с общими настройками для всех сервисов:

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

```
apiVersion: v1
kind: ConfigMap
metadata:
 name: common-setting-config
 namespace: akr-dev
data:
 SSL ENABLE: "FALSE"
 STORE PATH: "/etc/keystore/keystore.p12"
 STORE PASSWORD: "changeit"
 TRUST STORE PATH: "/etc/keystore/keystore.p12"
 TRUST STORE PASSWORD: "changeit"
 KEY ALIAS: "graph"
  PORT: "8080"
  DATABASE TIMEOUT: "30000"
  DATABASE_MAX CONNECTIONS: "15"
 KIBANA ENABLED: "FALSE"
  SPRING ACTIVE PROFILES: "keycloak"
  PROFILE: "keycloak"
  WEBSOCKET TOPIC: "websocket-dev"
  PREGEL REGISTER JOB TOPIC: "pregel-register-job-dev"
  GRAPH INFLUENCE REGISTER JOB: "graph-influence-register-job-
dev"
  PREGEL SERVICE NAME: "pregel-service-dev"
  RESET TASK CALLBACK TOPIC: "reset-task-callback-dev"
 URL BACKEND API: "http://backend-api-service:9090"
 URL AUTH SERVICE: "http://backend-auth-service:9090"
 URL PROJECT SERVICE: "http://backend-project-service:9090"
 URL PREGEL SERVICE: "http://backend-pregel-service:9090"
 URL BACKEND SERVICE: "http://backend-api-service:9090"
 URL ASYNC SERVICE: "http://backend-async-gateway-
service:9090"
  GRAPH-CORE-API: "http://backend-api-service:9090"
  KAFKA CONCURRENCY: "4"
```

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

Все остальные манифест-файлы для других сервисов находятся в папке поставки РК СВИД – Исходные коды / Пользовательский интерфейс / k8s-manifest.

Сведения о переменных окружения приведены в Таблице 3-3 настоящего Руководства.

Таблица 3-3 – Переменные окружения

Название параметра	Пример значения	Описание	
SSL_ENABLE	TRUE/FALSE	Включение SSL шифрования сервера (https протокол)	
STORE_PATH	/opt/back/ssl/keystore.p12	Путь к хранилищу, содержащему приватный ключ сервера для SSL протокола и публичные доверенные ключи (сертификаты). Хранилище в формате p12	
STORE_PASSWORD	123	Пароль от хранилища приватных/публичных ключей заданных в STORE_PATH	
KEY_ALIAS	graph	Алиас ключа, импортированного в хранилище приватных/публичных ключей заданных в STORE_PATH. Ссылка: https://security.stackexchange.com/questions/123944/what-is-the-purpose-role-of-the-alias-attribute-in-java-keystore-files	
PORT	8080	Порт, на котором будет запущено приложение (сервер)	
DATABASE_TIMEOUT	30000	Таймаут соединения к реляционной базе данных (в мс)	
DATABASE_MAX_CO NNECTIONS	30	Максимально возможное количество одновременных соединений к реляционной базе данных	

Название параметра	Пример значения	Описание	
DATABASE_URL	jdbc: postgresql://localhost:6432/gr aphui	Адрес соединения с реляционной базой данных в формате jdbc (ссылка: https://docs.oracle.com/cd/E1795 2 01/connector-j-8.0-en/connector-j-reference-jdbc-url-format.html)	
DATABASE_USERNAM E	user	Пользователь реляционной базы данных, от имени которого будет выполнятся соединение	
DATABASE_PASSWOR D	123 или зашифрованный ENC (rtuouq+neOBt+BPq1JdyD01cB xmlxhjOfFEj27Hqbys=)	Пароль от пользователя (DATABASE_USERNAME) реляционной базы данных. Может быть в открытом или зашифрованном виде. Шифруется через jasypt (ссылка — https://www.devglan.com/online -tools/jasypt-online-encryption-decryption)	
PROJECT_NAME	ORG	Наименование заказчика проекта. У каждого может быть свой. Влияет на наполнение базы данных. Под каждого заказчика — отдельное наполнение, зависящее от этого параметра	
PROFILE	sfera	Режим запуска приложения	
TRUST_STORE_PATH	/opt/back/ssl/keystore.p12	Путь к хранилищу публичных ключей (сертификатов) для защищенного соединения к arangodb	

Название параметра	Пример значения	Описание	
TRUST_STORE_PASS WORD	123	Пароль от хранилища публичных ключей (сертификатов) для защищенного соединения к arangodb	
JASYPT_ENCRYPTOR_ PASSWORD	my-secret	Кодовое слово для шифрования паролей методом jasypt. secret key (по ссылке — https://www.devglan.com/online-encryption-decryption)	
URL_AUTH_SERVICE	https://10.1.1.1:8082	http адрес микросервиса аутентификации. backend-auth	
ALLOWED_ORIGINS	*	-	
KIBANA_ENABLED	false	Включение/выключение логов в json формате	
APPLICATION_NAME	backend-search	Наименование микросервиса	
USER_FIO_FIELD	givenName	Наименование поля из JWT токена, из которого сервис отчетов будет извлекать ФИО (можно не заполнять, по умолчанию given_name)	
GRAPH-CORE-API	http://backend-api- service:9090	Http url сервиса backend-ap	

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

3.2.5. Развертывание сервиса DWH

Для сервиса dwh требуется наличие PostgreSQL (развертывание выполнено на предыдущих шагах).

В архиве с исходными кодами необходимо запустить скрипт для развертывания базы и заполнения справочников под сервис dwh (/db/ivd_dwh_init.sql).

Примечание — в файле указана процедура запуска файла по частям от одного пользователя, далее — часть от другого пользователя.

Также потребуется создание базы данных внутри Arangodb.

Пример скрипта для создания базы приведен ниже.

Пример

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

```
sudo arangosh # enter root (arangodb) password
#Create database.
db. createDatabase("graph db");
db. createDatabase("project db");
db. createDatabase("graph metadata");
db. createDatabase("report db");
db. createDatabase("graphui");
#Create user
var users = require("@arangodb/users");
users.save("dwh-client", "2KMaKFtA2V6yfZax");
#Grant access to the database created above.
users.grantDatabase("dwh-client", "graph db");
users.grantDatabase("dwh-client", "project db");
users.grantDatabase("dwh-client", "graph metadata");
users.grantDatabase("dwh-client", "report db");
users.grantDatabase("dwh-client", "graphui");
# list databases
db. databases()
# check connection
arangosh --server.username "dwh-client" --server.database
"graph db"
```

Для создания базы в PostgreSQL необходимо запустить SQL-скрипт:

a) Создать пользователя и базу данных ivd_dwh:

```
CREATE USER ivd_etl_user WITH PASSWORD '';

CREATE DATABASE ivd_dwh;

\c ivd_dwh;

CREATE SCHEMA ivd_dwh;

GRANT ALL PRIVILEGES ON DATABASE ivd_dwh TO givd_etl_user;

GRANT ALL PRIVILEGES ON SCHEMA ivd_dwh TO ivd_etl_user;
```

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

```
ALTER SCHEMA ivd_dwh OWNER TO ivd_etl_user;
```

b)

b) Создать пользователя и базу данных graph_mark:

```
CREATE USER graph_mark_user WITH PASSWORD '';

CREATE DATABASE graph_mark;

\c graph_mark;

CREATE SCHEMA graph_mark;

GRANT ALL PRIVILEGES ON DATABASE graph_mark TO graph_mark_user;

GRANT ALL PRIVILEGES ON SCHEMA graph_mark TO graph_mark_user;

ALTER SCHEMA graph_mark OWNER TO graph_mark_user;
```

c)

c) Создать пользователя и базу данных graph_project:

```
CREATE USER graph_project_user WITH PASSWORD '';

CREATE DATABASE graph_project;

\( \text{c graph_project}; \)

CREATE SCHEMA graph_project;

GRANT ALL PRIVILEGES ON DATABASE graph_project TO graph_project_user;

GRANT ALL PRIVILEGES ON SCHEMA graph_project TO graph_project_user;

ALTER SCHEMA graph_project OWNER TO graph_project_user;
```

d)

d) Создать пользователя и базу данных graphui:

```
CREATE USER graphui_user WITH PASSWORD '';

CREATE DATABASE graphui;

\( \text{c graphui;} \)

CREATE SCHEMA graphui;

GRANT ALL PRIVILEGES ON DATABASE graphui TO graphui_user;

GRANT ALL PRIVILEGES ON SCHEMA graphui TO graphui_user;

ALTER SCHEMA graphui OWNER TO graphui_user;
```

e)

e) Создать пользователя и базу данных graph_metadata:

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

```
CREATE USER graph_metadata_user WITH PASSWORD '';

CREATE DATABASE graph_metadata;

\c graph_metadata;

CREATE SCHEMA graph_metadata;

GRANT ALL PRIVILEGES ON DATABASE graph_metadata TO graph_metadata_user;

GRANT ALL PRIVILEGES ON SCHEMA graph_metadata TO graph_metadata_user;

ALTER SCHEMA graph_metadata OWNER TO graph_metadata_user;

f)
```

3.2.7. Развертывание LLM

3.2.7.1.Репозитории с кодом

Необходимо скачать в полученном архиве репозитории с кодом и разархивировать.

3.2.7.2.Сборка и запуск компонентов

Запуск компонентов должен осуществляться путем сборки docker-контейнеров.

3.2.7.3.Задание переменных окружения для получения конфигов из FTP, доступа к LLM и БД

Для того, чтобы задать креды для подключения в S3 при запуске компонентов в dockerконтейнере необходимо создать .env файл в корневом каталоге с исходными кодами:

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

```
# Имя пользователя для доступа к FTP
FTP USERNAME=<username>
# Пароль пользователя для доступа к FTP
FTP PASSWORD=<password>
# Имя пользователя для доступа к внешней БД системы ИВД
EXT DB USERNAME=<username>
# Пароль пользователя для доступа к внешней БД системы ИВД
EXT DB PASSWORD=<username>
# Ключ доступа к API большой языковой модели (LLM)
# см. раздел Установка и запуск vLLM
LLM API KEY=<secret key>
# Путь до конфигурационного файла system check
PATH CONFIG SYSTEMCHECK=<ftp://hostame:port/путь/до/файла-
настройки-systemcheck.yaml>
# Путь до конфигурационного файла akr
PATH CONFIG AKR=<ftp://hostame:port/путь/до/файла-настройки-
akr.yaml>
# Путь до каталога хранения лог файлов компонента.
# Не указывайте / в конце пути
# Компонент сохранит в нем файл с именем akr.log и
system check.log
# Не указывайте имя файла в пути
PATH LOG DIR=</путь/до/каталога/логов>
# Путь до модели - укажите абсолютный путь
PATH TO MODEL=</путь/до/модели>
```

3.2.7.4.Запуск компонентов из docker-контейнеров

Необходимо собрать и запустить контейнеры, используя docker-compose файл:

```
docker compose up -d --build
```

3.2.7.5.Запуск и установка vLLM

Необходимо выполнить:

a) Разместить файлы модели из дистрибутива поставки Системы на машине, предназначенной для хостинга vLLM.

Примечание – путь до модели указывается в параметре model при старте vLLM.

b) Установить vLLM на машине, предназначенной для хостинга vLLM.

Внимание! Необходимо установить следующие зависимости в отдельном окружении python:

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

```
pip install transformers==4.43.3 vllm==0.5.3.post1
```

c) Установить требуемые драйверы графических процессоров на машину, предназначенную для хостинга vLLM.

Примечание — в случае использования графических процессоров NVIDIA H100 необходимо устанавливать следующие драйверы: `Driver Version: 545.23.08 CUDA Version: 12.3`.

d) Создать для работы vLLM пользовательский сервис linux – vllm.service:

```
nano ~/.config/systemd/user/vllm.service
e)
```

е) Вставить в файл следующее содержимое:

```
[Unit]
Description=vLLM API Server
After=network.target
[Service]
Environment=PATH=/home/dsuser/.local/bin:/usr/local/bin:/usr/bi
n:/bin
Type=simple
ExecStart=/usr/bin/python3 -m
vllm.entrypoints.openai.api server \
    --port 3423 \
    --model <path/to/model> \
    --api-key <sectet api key> \
    --tensor-parallel-size 2 \
    --disable-custom-all-reduce \
    --uvicorn-log-level debug
Restart=always
RestartSec=3
[Install]
WantedBy=default.target
```

f)

- f) Указать путь до каталога с моделью <path/to/model> в параметре PATH_TO_MODEL env файла (описание приведено в п. 3.2.7.3 настоящего Руководства, а также в конфигурационном файле system_check.yaml (раздел common_params: Ilm_connection: model)).
- g) Указать ключ для доступа к API vLLM <sectet_api_key> в параметре LLM_API_KEY env файла (описание приведено в п. 3.2.7.3 настоящего Руководства):

```
chmod 644 ~/.config/systemd/user/vllm.service
systemctl --user daemon-reload
```

АССИСТЕНТ ДЛЯ КОМАНД РАЗРАБОТКИ

systemctl --user enable vllm.service h) h) Проверить статус: systemctl --user status vllm.service i) і) Посмотреть логи: journalctl --user -u vllm.service j) ј) Остановить: systemctl --user stop vllm.service k) k) Рестарт: systemctl --user restart vllm.service I) I) Для старта сервиса даже без логина пользователя: loginctl enable-linger \$USER m)

4. Инструкция по сборке исходных кодов системы «Ассистент для команд разработки»

4.1.Запуск компонентов непосредственно в среде разработки LLM

Для запуска АКР необходимо выполнить:

```
uvicorn akr_app:app --host 0.0.0.0 --port 9061 --workers 4
```

Для запуска akr_consumer необходимо разместить конфигурационный файл из src/iad_repo/config/akr.yaml в бакете S3, а также выполнить:

```
sh start_consumer.sh akr_consumer.py
s3://<bucket_name>/path/to/akr.yaml logs/akr.log
```

Последним аргументом передается путь до лог-файла компонента.

Скрипт start_consumer.sh дополнительно вызывает скрипт start_ssh.sh в котором создается ssh-proxy с подключением к серверу с Postgres.

Для запуска System_check необходимо выполнить:

```
uvicorn system_check_app:app --host 0.0.0.0 --port 9062 --
workers 4
```

Для System_check_consumer необходимо разместить конфигурационный файл из src/iad_repo/config/system_check.yaml в бакете S3, а также выполнить:

```
sh start_consumer.sh system_check_consumer.py
s3://<bucket_name>/path/to/system_check.yaml
logs/system_check.log
```

Последним аргументом передается путь до лог-файла компонента.

Скрипт start_consumer.sh дополнительно вызывает скрипт start_ssh.sh, в котором создается ssh-proxy с подключением к серверу с Postgres.

4.2.Проверка работы компонентов

4.2.1.Общие сведения

Документация по API компонентов AKP и System_check находится по адресам:

- http://localhost:9061/docs akr;
- http://localhost:9062/docs System check.

Для проверки работы компонента akr_consumer необходимо выполнить подключение к

БД:

```
host: localhost
port: 5432
username: ivd_etl_user
password: nTxBTAmrMoTrQn4a
database: ivd_dwh
```

Перед подключением к БД должен быть запущен ssh прокси (скрипт start_ssh.sh).

4.2.2.Проверка system_check_consumer.py

Необходимо добавить в таблицу event.evnt_rgtr новое событие (запись):

```
INSERT INTO "event".evnt_rgtr (
    evnt_type_id, doc_id, evnt_context, created_at,
    created_by_code, evnt_type_name
) values (
    3, null,
    '[{"attribute_id": 1, "profile_id": 0}]',
    LOCALTIMESTAMP, '', 'req_system_check'
);
```

Далее следует ожидать новую запись в event.evnt_rgtr с evnt_type_name="system_check_event".

5. Журнал автотестирования системы «Ассистент для команд разработки»

Журнал автотестирования Системы заполняется в соответствии с формой, которая представлена в **Таблице 5-1** настояшего Руководства.

Таблица 5-1 – Форма журнала автотестирования

Дата тестирования	Наименование теста	Результат теста	Комментарий